
Epic-level Story Generation with LLM through
Auto-prompted Reinforcement Learning

Abstract—In an era where the capabilities of large language
models (LLM) like ChatGPT are transforming digital communi-
cation, the challenge of directing these tools to create extensive,
coherent narratives on an epic-scale has emerged as a critical
frontier. This study introduces a novel methodology that fuses
the spontaneous story generation of LLMs with the precision
of auto-prompted reinforcement learning for crafting epic-scale,
coherent narratives. Our approach starts with generating a
skeletal outline, followed by iterative expansion, and blending
operations for maintaining structural coherence in long-form
content. To train the reinforcement learning model efficiently,
we introduce an environment simulator that leverages a database
of historical LLM interactions, circumventing the limitations of
direct LLM interactions. This method enhances the decision-
making process of the RL agent, enabling more effective prompt
selection and narrative flow in extended texts. We validate its
effectiveness through experiments, demonstrating the model’s
ability to generate structured, narrative-driven text, thereby
setting a new pathway towards AI-driven, large-scale storytelling.

Index Terms—GPT-3.5, story generation, reinforcement learn-
ing, auto-prompt

I. INTRODUCTION

The realm of text generation has witnessed significant
advancements, enabling Large Language Models (LLMs) like
ChatGPT to generate extensive pieces of content spanning
a few thousand words. However, the pursuit of achieving
epic-level text generation with arbitrary long text remains a
substantial challenge.

The first challenge is managing the story’s narrative struc-
ture: While an LLM is capable of generating vast amounts
of text, guiding the model to create text that adheres to a
predetermined plot or leads to a logical conclusion presents
challenges [1]. User prompts can guide the model, but they
have limited power, and the model may deviate from the
desired narrative when the text becomes longer. The second
challenge is maintaining consistency: Long text often requires
maintaining a consistent narrative over thousands of words,
which can be challenging for an LLM [2]. While a human
writer naturally keeps these elements in mind while writing,
an LLM has no inherent understanding of the underlying plot
or characters, making it difficult to keep a long narrative
consistently in line with the text’s established elements [3].
The third challenge is evaluation: it’s difficult to measure how
well an LLM performs in long text generation. Traditional
automatic evaluation metrics like BLEU [4], ROUGE [5], or
even more recent ones like BERTScore [6], may not capture
all the differences of a well-written long text [7]. Human
evaluation is more reliable but costly and time-consuming.

The main motivation of this paper is to address the chal-
lenges above by developing a novel framework that enhances
the capability of LLMs to generate long texts with consistent
narratives and structured storylines.
1) Develop a strategy for generating and refining storylines:

the first issue is to generate the storyline from the provided
title and subsequently refine it as the story generation
progresses. assessing plot conflicts and iteratively refining
the storyline to enhance consistency.

2) Optimizing LLMs in text Generation for story plots: The
second issue lies in developing algorithms to guide the
LLM effectively, ensuring the coherent and purposeful
creation of narrative content in alignment with a predefined
storyline and preceding plot.

3) Evaluating Long Text Requirements: The third aspect is
evaluating whether the generated text fulfills the require-
ments of a long text. This involves assessing factors such as
narrative structure, plot coherence, and overall text genera-
tion effectiveness. Evaluating the text against these criteria
helps determine the success of the long text generation
process.

Navigating the complexities of text generation demands a
strategic approach that ensures complete storyline and consis-
tent story. Reinforcement learning (RL) provides a potent and
promising approach to guide a LLM to maintain consistency
[8], [9]. In RL, an agent learns from the reward feedback based
on its actions. This feedback loop can help guide a LLM’s
text generation according to requirements such as maintaining
high consistency level. Moreover, RL can balance exploration
(trying out new ways of text generation) and exploitation
(using known successful methods) [10]. This can be crucial
in striking a balance between coherence and diversity in the
generated text while maintaining consistency. Thirdly, another
key benefit of RL is its ability to handle delayed rewards,
which is crucial in long text generation. In a long text
generation, the impact of a decision (like introducing a new
character) may not be seen immediately but could affect the
quality of the text much later. RL is well-suited to optimize
for such scenarios.

In this paper, we propose an auto-prompted RL approach for
epic-level text generation using GPT-3.5 1. In a nutshell, our
approach generates a skeleton outline first, and then iteratively
expands each chapter using RL agent to select suitable prompts
for GPT-3.5. More specifically, our contributions are three-
fold: (1) We design an auto prompt strategy to generate

1https://platform.openai.com/docs/model-index-for-researchers
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text that aligns with both the established storyline and the
predefined plot. This ensures textual continuity by guiding the
LLM towards predefined storyline, preventing the repetition
of plot generation and ensuring consistency in role events. (2)
We model the epic-level text generation process as a Markov
Decision Process (MDP), providing a formal framework for
solving the problem with RL. We put forward an automated
process for addressing challenges in epic-level text genera-
tion by employing RL for story plot progress controller. (3)
Recognizing the time and cost challenges associated with RL
training in a real interactive environment, we introduce an
Environment Simulator. Leveraging historical interactions, this
simulator generates simulated responses based on the current
state and action, enabling efficient expression of simulated
action replies. This innovation mitigates the lengthy training
duration associated with traditional RL methods.

In our experiments, we used the Proximal Policy Optimiza-
tion (PPO) algorithm for reinforcement learning, creating a
comprehensive environment with states, actions, and rewards
as detailed in Chapter IV-D. We employed GPT-3.5, fine-
tuned for versatility across text genres. The RL policy, initiated
with a prompt template, updated parameters based on chapter-
wise rewards. Evaluation included assessing average rewards
for extended story generation. We compared our approach
with RecurrentGPT, a model leveraging interactive storytelling
and emulating long-short-term memory architectures, serving
as a benchmark for our work. Our experiment results show
that the proposed approach is effective in controlling LLM
in generating long and consistent text with a strong sense
of narrative structure. Furthermore, we define the evaluation
metrics to guide the text generation with the constraint of a
predefined structure and guaranteeing a satisfying conclusion.

II. RELATED WORK

Many existing work has been conducted on employing AI
in the domain of text generation. In the project TALE-SPIN,
Meehan [11] was the first to utilize AI for the automatic gener-
ation of stories. Unlike story grammars, TALE-SPIN focused
on characters’ desires and intentions, employing AI problem-
solving techniques to fulfill these objectives. AI planning in
story generation involves providing an initial state and a goal,
with a reasoner inferring actions to lead the initial state to
the story goal, and a directing process may be employed
to improve the quality of the generated story. In [12], they
develop Plotter, an introduced computational tool, is capable
of generating story plots using the plot fragments from Plotto
along with their corresponding instructions. The success of
Seq2Seq models in various natural language processing (NLP)
tasks motivated researchers to explore their application in
generating complete stories [13]. The work in [14] devised
a story generator by combining two readily available sys-
tems. This novel approach allows the generator to produce
stories when provided with a sequence of separate, unrelated
short descriptions. Text samples generated by the GPT-2 [15]
demonstrate that these PLMs can generate text that rivals
human writing. In [16], they study on write intermediate

plot structure that connects the given prompt with the final
generation of a story. They fine-tune BART [17] using two
sets of training data. The first set consists of prompts and
extracted plot structures that serve as a standard reference.
The second set includes prompts combined with plots and their
corresponding stories.

Reinforcement learning has been explored as another ap-
proach in the domain of control language models. The work in
[18] extended the use of reinforcement learning to controllable
story generation. They introduced a reward-shaping technique
that generates intermediate rewards at each timestep, and these
rewards are subsequently incorporated into a language model
through back-propagation. This approach effectively directs
the generation of plot points toward a specified objective
or goal. However, when it comes to long text generation,
it operates in an open domain where we don’t specify a
particular object or direction for the text. GPT-based agents
like AutoGPT 2 are significant in the realm of computer-
assisted writing systems [19]. The current leading systems
in this field, as pointed out in [20], primarily concentrate
on offering localized editing suggestions and generally re-
gard Large Language Models (LLMs) as ”black boxes”. This
means these systems use the outputs of the models without
fully understanding or manipulating their internal workings
or decision-making processes. RecurrentGPT [21] operates
by receiving and updating various inputs such as previous
content, short-term and long-term memory of the content, and
content outlines at each time step. It initially generates the first
paragraph and suggests potential continuation plans, but relies
on the writer to choose, modify, or create new plans. This
method is not fully autonomous and lacks clear termination
conditions, leading to uncertainty about when the text should
conclude.

III. PROBLEM DEFINITION

In this project, epic-level text generation pertains to produc-
ing text based on a given title I via a automated text generation
system denoted as Generator.

E = Generator(I)

Generator(I) = Controller(LLM(I, Proi))
(1)

Here, E represents the resulting story. The aim of this study
is to design Generator, which takes the form of an LLM
controller. The controller utilize the LLM in conjunction with
the generated prompt Proi to produce content accordingly.
Firstly, we generate a storyline with I . To enhance specificity,
we employ a top-level outline s0 = Outliner(I) as the
storyline. As the storyline progresses, a detailed sub-level
outline si is developed, and content is generated in alignment
with the high-level outline.

We illustrate the example using the provided title “Snow
White”, as depicted in Figure 3. The top-level outline is
generated as follows: “• Chapter 1 The Evil Queen: The

2https://github.com/Significant-Gravitas/Auto-GPT
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TABLE I
QUANTITATIVE AND QUALITATIVE EVALUATION METRICS FOR EPIC-LEVEL TEXT GENERATION

Metrics Description

number of paragraphs Total number of paragraphs in the currently generated text.
length of text Total number of words in the currently generated text.
number of simple sentences Total number of sentences with fewer than 15 words.
number of low-frequency words Number of occurrences of low-frequency words (as counted using the wordfreq library).
coherence score Evaluation of results conducted by ChatGPT (on a scale of 0-5).
consistency score Evaluation of results conducted by ChatGPT (on a scale of 0-5).
number of recall nodes Number of significant occurrences that convey the idea of specific points.

story starts with the introduction of the villain, the Evil Queen.
She is obsessed with her own beauty and jealous of anyone
who is more beautiful than her. She learns about Snow White
who is the fairest of them all and decides to get rid of her.
• Chapter 2 The Escape: Snow White is aware of the evil
queen’s wicked plan and escapes into the forest. She eventually
meets the seven dwarves who offer her shelter and protection.
They become friends and Snow White helps them in return. •
Chapter 3 The Huntsman’s Failed Mission: . . . ”.

Concurrently, we iteratively refine the outline as the story-
line progresses. For instance, once Chapter 1.1 is generated,
the system may adjust subsequent outlines, such as Chapter
1.2, Chapter 2, and so forth, in response to the evolving content
of the story. We employ several features strategically incor-
porated to indicate the progression of the ongoing storyline,
as described below. Each chosen feature contributes a unique
dimension to the narrative, serving as a dynamic indicator of
the story’s unfolding complexity.

Proi = PromptGenerator(li−1, pi−1, ni−1, si−1)

Gi = LLM(Proi)

li += Len(Gi)

ni = {n0, . . . , ni−1,LLM(Gi)}
pi += NumLowFreq(Gi)

si = Outliner(li, pi, ni, si−1)

E = {G0, G1, . . . , Gi}

(2)

An epic-level story is a long and expansive narrative that cap-
tivates readers with its length (l), intricate word-building (p),
plot (n) and story outline (s). The length l represents the word
size of the narrative. Epic-level texts typically unfold over a
considerable amount of words. p utilize the identification of
low-frequency words as a discriminative factor for determining
the writing level [22]. The plot n refers to the sequence of
events that make up the story. In an epic-level text, the plot is
typically complex, involving multiple intertwined storylines, a
large number of significant characters, and various major and
minor conflicts. The narrative structure s refers to the outline
that shapes the storyline of the text. Each of these features
contributes to the epic scale, complexity, and richness of the
narrative, helping to captivate and engage readers.

In the LLM controller, a control mechanism is required
to overcome a primary challenge with current LLMs: their

inability to process long text simultaneously. For a more
cohesive comprehension of the text, it’s necessary to plan
structure and arrange the generated text, which allows for a
thorough understanding of the current state of the writing.
To control the LLM, we require a collection of pre-defined
prompt templates Pro = ρ1, ρ2, ..., which come with slots
for integrating context information {l, p, n, s}, obtained from
the existing narrative. So, the approach involves choosing the
suitable prompt for LLM based on the context information and
generating text in an iterative manner. Proi is the selected
prompt in timestep i, and Gi is the corresponding response
from LLM. E is consist of Gi. s0 is created based on the
provided title I , and l0, p0 are initialized to 0. Initially, n0 is set
to be empty. The variable i denotes the step of the Controller,
starting from 1. The above procedure can be formulated as
Equation 2.

IV. METHOD

A. Paradigm

Following standard terminologies in RL, an MDP is repre-
sented as a tuple (S,A, r, γ, P ), where S denotes the set of
states, A represents the set of actions, r : S ×A → R defines
the reward function, γ is the discount factor, and P refers to
the transition function.

In our specific task of generating epic-level text, we define
the state space as S = Rk, which corresponds to a k-
dimensional vector space used for representing the snapshot of
the narrative context {l, p, n, s}. The action space A consists
of interactive prompts that are employed iteratively to control
LLM. The reward function r = func(E) is determined by
applying conventional natural language evaluation metrics to
assess the quality of the generated text. Thus, our objec-
tives comprise two essential components: identifying optimal
prompts for LLM to generate the storyline’s plot content and
ensuring the coherence of the narrative via storyline. We aim to
produce epic-level text that maximizes the cumulative reward,∑T

t=0 γ
tr(st, at), where T ∈ R

⋃
∞ represents the maximum

number of steps, based on our specified metrics.
After having the MDP formulation, we need to then develop

a method to achieve our goal, by finding the optimal policy
to the MDP π : S → △(A), a mapping from the states to
the distribution over actions. We apply the PPO algorithm
[23], a deep RL algorithm that parameterizes the policy π



with a parameter θ. The optimization objective of our problem
becomes: maxθ Eτ∼πθ,η[r(τ)] where η is the initial state
distribution, πθ is the parameterized policy, τ is the sequence
of state-action pairs generated by πθ under the initial state
distribution, and we define the r(τ) as the cumulative reward
given by trajectory τ .

Storyline Refinement: Upon completing a chapter, we
initiate a comprehensive review of the current outline, de-
ciding whether to refine or rewrite subsequent chapters. This
refinement process involves evaluating the coherence and
thematic consistency of the narrative. The function Outliner
involves adjustments and improvements to the current outline,
ensuring a more polished and coherent storyline for the next
chapter. This dynamic process contributes to the evolution and
enhancement of the overall narrative.

Consistent Story plot content generation: Each chapter
commences with content generation, and based on the current
content and previous plot, the RL method selects actions,
such as finishing the story, writing the next chapter, rewriting
current content, or extending current content. These actions
are contingent upon the current text features l, p, n, s. In this
process, PromptGenerator is used to choose optimal prompt
while controlling LLM.

In conclusion, our proposed paradigm employs RL to iter-
atively refine the storyline and control the LLM for stoty plot
text generation. The writing state is represented by feature val-
ues from structured text, providing a snapshot of the narrative
context. The RL agent selects an optimised prompt based on
this state, populates it with context, and feeds it to the LLM.
RL evaluates the generated text, refining future selections. This
approach optimizes long story generation, aligning task goals
with RL rewards and feature-based state representation.

B. Long Texts Evaluation

We developed specific metrics for evaluating long text gen-
eration success, including narrative structure, plot coherence,
and text generation effectiveness. Key metrics like length, con-
sistency, and coherence help gauge the quality of long texts. A
’draft’ strategy optimizes text construction, which undergoes
automatic evaluation involving statistics and scoring. Certain
factors, such as overly simple sentences, can negatively impact
the score, while others may increase it.

The table’s top four metrics can also be determined auto-
matically. However, we want to use the text assessment feature
on ChatGPT to assess the final two criteria (coherence and
consistency). We send the text to ChatGPT, which response
with an evaluation score (from 0 to 5) and an explanation of it.
ChatGPT has a finite number of Tokens per API call, which is
insufficient to support evaluating all currently generated texts
at once. Consequently, we developed two lists for directly
assessing the coherence and consistency of text parts, storing
interim results for later computations. This contrasts with
automatic metrics, which necessitate aggregating all long-form
generated texts.

C. Environment Simulator

Using a real interactive environment to train reinforcement
learning models can be both costly and time-intensive. As an
example, making an API request to GPT-3.5 for a response
typically takes approximately 20 seconds. In our text genera-
tion process, one episode may require over 100 API requests.
Considering that traditional RL training often involves millions
of timesteps to achieve a satisfactory policy, the training
duration can extend beyond several months. As a result, we
adopt the concept presented in the Environment simulator
mentioned in [24]. The simulator is developed based on
historical interactions as database. By taking the current state
st and action at as inputs, the simulator generates a simulated
response. This method enables us to express the simulated
action reply as Sim(st, at), where the precise definitions of
Sim(·) may differ depending on the specific reinforcement
learning (RL) models used.

D. Epic-level Story Generation Prototype

Our research resulted in a prototype for long story genera-
tion, using the mentioned methodologies to create contextually
consistent narratives. The prototype’s performance, evaluated
with our new metrics, showcases its ability to generate appro-
priate long texts. The design and performance specifics of this
prototype are detailed in this final section.

a) Framework: The framework, illustrated in Figure 1,
employs PPO as the chosen reinforcement learning algorithm
for policy parameter updates which is widely used in Natural
Language Processing (NLP) [25].

b) Action Definition: To ensure consistency, coherence,
detail, length, minimal repetition, and reader engagement in
story generation, we have defined the following actions: plan,
draft, revise, augment, expand, resolve, and terminate. The
plan action creates outlines for chapters and sub-chapters,
ensuring book consistency [26] [27]. The draft action gen-
erates controlled content for ongoing chapters [28]. Revise
restructures outlines or improves existing drafts for text quality
[29]. Augment incorporates dialogue and background descrip-
tions for increased engagement. Expand extends drafts while
maintaining coherence [30]. Resolve integrates the current
draft into the main body, and terminate concludes the training
process.

c) State Definition: To support the desired functionalities
of the actions, our state includes: Main Novel (E), Novel
Outline (outline), Current Plan (plancurrent), Current Draft
(draftcurrent), Plot Events (events). The outline is structured
as a dynamic spanning tree, with nodes representing pairs of
chapter titles and brief summaries. By utilizing a depth-first
search (DFS) on this outline tree, we generate paragraphs as
leaf nodes for each chapter. Through dynamic programming,
we can expand the tree by recursively adding new nodes
to the current chapter node. This approach maintains the
outline as the novel’s backbone, providing both organization
and flexibility for incorporating details and exploring deeper
content. The plancurrent represents the currently traversed node
during the depth-first search. It contains a title and a summary



Fig. 1. The framework consists of three key components: the agent, with policy and Proximal Policy Optimization (PPO) sections, and the environment
(Env). The agent makes decisions and chooses actions based on conditions. The PPO guides these actions using past learnings. Env interacts with GPT-3.5
and stores state information. The agent bases its next action on rewards and observations like paragraph count and text length.

of a chapter that have yet to be resolved, serving as a plan
for generating several paragraphs as the leaf of the node.
The draftcurrent consists of generated paragraphs for plancurrent,
temporarily cached for potential quality improvements through
actions such as revision and expansion, as defined in Ac-
tion Definition. Finally, the events capture a sequence of
significant events that have occurred in E . This serves as a
brief memory of previous chapters, ensuring consistency and
facilitating the smooth development of new plots.

d) Capture Observation: To capture the features of the
writing state and represent a snapshot of the narrative context,
we have designed a 10-dimensional vector as observations.
These manually created features include the following com-
ponents:

• Chapter Count: Measures the number of nodes in the outline,
representing the count of chapters at all levels.

• Chapter Tiers: Indicates the depth of the outline, representing
the hierarchical structure of chapters.

• Outline Status: An indicator of whether plancurrent is empty,
which implies that either there is no outline or all chapters in
outline have been resolved.

• Current Draft Paragraph Count: Measures the number of
paragraphs in draftcurrent.

• Current Draft Length: Considers the word count of draftcurrent.

• Current Draft Coherence: Assesses the logical and consistent
flow of ideas in draftcurrent.

• Current Draft Consistency: Measures the uniformity and
adherence to established rules within draftcurrent.

• Current Draft Simple Sentence Count: Considers the number
of simple sentences in draftcurrent.

• Current Draft Low-Frequency Words: Reflects the usage of
unique vocabulary in draftcurrent.

• Main Novel Length: Considers the word count of E .

r = r1 + r2 + r3

r1 = 0.1× tiercount + 0.1× paracount

+ 0.01× length − 0.1× simp-sentcount

+ 0.2× (coh + cons) + 0.1× plotnum

+ 0.1× low-freq-wordcount

when one top level chapter is completed:

r2 = 200× (lengthpercent − 0.5)

when all chapters are completed:

r3 = (length − 10000)/100

(3)

e) Rewards Calculation: Rewards are calculated based
on the state. Similar to the observations, we have designed



manually created factors, but based on the main novel E
instead of draftcurrent. The reward function is designed as
Equation 3 Here, the reward is composed of the following
components: Chapter Tiers (tiercount), Main Novel Para-
graph Count (paracount), Main Novel Length (length), Main
Novel Coherence (coh), Main Novel Consistency (cons),
Main Novel Simple Sentence Count (simp-sentcount), Main
Novel Low-Frequency Words (low-freq-wordcount), Number of
Plots (plotnum), Length Complete Percent (lengthpercent). The
“Number of Plots” is the count of events, while the “Length
Complete Percent” represents the progress made in completing
the overall length of the novel as a percentage.

We evaluate the novel’s quality by considering various
weighted factors, resulting in an overall score. The factor
weights in the reward calculation are subjective and adjustable
based on specific needs or preferences.

f) Training Process: As describes in algorithm 1, the ini-
tiation of the agent’s training process involves the formulation
of a top-level outline and the initial action plan. Following the
selection of an action, a prompt is chosen and combined with
state components. GPT-3.5 serves as a proxy for these actions,
as illustrated in Figure 1. Subsequently, the newly constructed
prompt, filled with relevant state information from Timestep
t − 1, is transmitted to the Language Model Proxy GPT-3.5,
which generates an adaptive response. The environment then
updates its state based on the action and text, preparing for
future utilization at Timestep t. These new observations and
rewards guide the prediction of future actions using the PPO
algorithm to update policy parameters.

Algorithm 1 Training Process
1: Initialize:
2: Construct the RL policy π : S → △(A) parameterized by θ

using PPO. Initialize environment with predefined state, action
space, and reward function.

3: Set GPT-3.5 as LLM proxy, story title I as initial state s0 and
timestep t = 1.

4: Define prompt templates Pro = ρ1, ρ2, ... corresponding to A.
5: repeat
6: Step 1: Action Selection Policy π selects action at

(a1=”plan”).
7: Step 2: Prompt Construction Construct a new prompt

ρ′t with components in st−1, from the prompt template ρt
corresponding to action at.

8: Step 3: Perform Action Send ρ′t to LLM, receive response
Gt, and update state st based on at and Gt.

9: Step 4: Update Policy Calculate rewards rt(st, at), update
policy parameters θ using PPO to maxθ Eτ∼πθ,η[r(τ)].

10: t = t+ 1.
11: until termination condition

For instance, when generating a new draft (highlighted in
rust color in Figure 1), we incorporate the plancurrent and events
to form the prompt sent to GPT-3.5: “Your task is to develop
specific and detailed content based on the given outline and
event information list, with the requirements: ...”.

We use the GPT-3.5 API for environment simulation, gen-
erating a long story titled ”Snow White” with 10,000 calls.
These responses are saved and used for the remaining 990,000

calls. During training, we search for similar actions in the
database before using the API. If found, we select one of the
top three corresponding responses randomly, otherwise, we
call the API.

V. EXPERIMENTS

To assess the efficacy of our approach, we devised and
executed a series of experiments. For the training phase, we
opted for the story title “Snow White”. During the testing
phase, we produced six stories and conducted a comparative
analysis with the baseline model, considering factors such as
text length, structural coherence, and adherence to the story
plot.

A. Experimental Setup

In our experiments, we select to use Proximal Policy
Optimization (PPO), a reliable and efficient reinforcement
learning algorithm. The environment we have constructed
involves defining states, actions, and rewards as described in
Chapter IV-D. We utilized a state-of-the-art language model
called GPT-3.5. This model has undergone fine-tuning using a
substantial corpus of diverse text genres to ensure its versatility
and applicability across a wide range of domains. While
we specifically used GPT-3.5 for our experiment, it’s worth
noting that other language models can also be employed once
their APIs are available, allowing for further exploration and
comparison in future studies.
Experiment Procedure For each chapter and sub-chapter
of the text, a reward system was designed, with the RL
policy updating its parameters in response to these rewards.
We implemented a callback: Stop Training On No Model
Improvement, which would stop the training process if there
was no observable enhancement in performance. This training
procedure was repeated for predefined episodes or timesteps.
In order to save training time, we developed a database to
store the prompts and corresponding results from the OpenAI
API responses. After saving the best model, we incorporated
an evaluation process. This evaluation assessed the average
reward for each action in extended story generation. During
the training phase, we utilized a single story title, while in the
testing phase, we incorporated a collection of story titles.
Baseline Comparisons We have observed RecurrentGPT, an
innovative text generation model that leverages interactive sto-
rytelling. By employing state-of-the-art language models like
ChatGPT, it emulates long-short-term memory architectures,
facilitating the generation of extensive textual content while
maintaining contextual coherence. This aligns well with our
research, and we are contemplating its utilization as a baseline
for our comparative analysis.

B. Results and Discussion

As show in Table II, Auto-Prompted RL generates longer,
coherent narratives without recurrent human-machine inter-
action or reliance on short-term memory summaries. It en-
sures a complete story structure with a clear ending and
a consistent storyline, unlike RecurrentGPT, which depends



Fig. 2. In the top left graph, the reward initially starts around -400 and reaches 700 within 10 million timesteps. It stabilizes after 3 million steps at a higher
value, indicating successful training. The top right graph shows a decrease in the number of steps required for completing one episode, from around 120 to
approximately 50. This reduction stabilizes after 3 million timesteps. As training advances, fewer steps are needed for generating a complete episode, leading
to improved efficiency. The bottom left graph shows a linear relationship between the cumulative time required for each step in the training process. The
bottom right graph demonstrates a decreasing training loss, approaching zero as training progresses. This suggests that the model quickly converges after the
first 20,000 steps.

on human-provided cues at each step. The aforementioned
analysis reveals that our methodology yields novel excerpts
with a significantly greater volume of text. This achievement
represents a substantial breakthrough in overcoming the token
constraints imposed by ChatGPT’s API, thereby facilitating
the generation of extensive textual content. Additionally, as
elucidated earlier, our generated novels possess purposeful
conclusions, thereby enhancing the overall coherence of the
narrative, as opposed to relying on an infinite and meandering
generation of stories based on the summarization of long-
short term memory. This distinctive feature ensures a more
comprehensive and satisfying storytelling experience for the
readers.

According to the results described in Figure 2, the re-
ward reaches a stable state at approximately 3e6 timesteps.
Similarly, the episode length stabilizes around 50 after the
same number of timesteps. The training duration exhibits

a consistent increase, indicating a steady interaction with
the simulator. Additionally, the training loss significantly de-
creases within the initial 20,000 steps. During the testing
phase, we utilized ten different story titles, generated by GPT-
3.5, as test samples. The results demonstrate that the final
reinforcement learning model surpasses the initial model in
terms of length, coherence, and consistency. 3

Case Study As the text is very long, more than 20,000
words, we select to show part of the chapters here as our case
study in Figure 3. The story titled ”Snow White” serves as
the basis for this novel. The narrative has five chapters with
sub-chapters, starting with the “Evil Queen” and ending with
“Snow White’s victory”. While based on a known fairy tale,
our version changes some details for a distinct story. Compared
to initial training, this story has a complex structure due to
multiple tiers of chapters, adding vividness to the narrative.

3More test results can be seen from https://bit.ly/3tYrYEx
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Fig. 3. Our method constructs a story by first determining each chapter’s title and main content, then breaking it into subsections for coherence. Rather than
deciding the total number of chapters upfront, it completes one chapter before starting the next.

TABLE II
UNLIKE RECURRENTGPT THAT USES INTERACTIVE STORYTELLING, AUTO-PROMPTED RL GENERATES LONGER, COHERENT STORIES IN ONE CLICK

WITHOUT REPEATED HUMAN INTERACTION. IT RESULTS IN A MORE COMPLETE STORY STRUCTURE WITH CLEARER ENDINGS, AND MAINTAINS A
SPECIFIC STORYLINE THROUGHOUT THE TEXT. CONVERSELY, RECURRENTGPT RELIES ON HUMAN-PROVIDED CUES AT EACH INTERACTION.

Features RecurrentGPT Auto-Prompted RL

Text Length 5000 words max (guaranteed content coherence and
human evaluation)

20,000 words or more (guaranteed coherence and con-
sistency)

Structural Closure divergent with no real end have a clear end of the article to keep the content
complete

Story Plot no specific plot, rely on the summary to control the
conclusion

specific plot libraries control full-text generation

The inclusion of numerous events also adds variation and
depth.

VI. CONCLUSION

In conclusion, effective long text generation via Pretrained
Language Models (PLMs) depends on three considerations:
generating and refining storylines, optimization for story
plots text generation, and a systematic evaluation of long
text requirements. Our proposed auto-prompted Reinforcement
Learning (RL) approach using GPT-3.5 notably addresses
these considerations, as demonstrated by our experimental
results. Through the initial creation of an outline followed by
the expansion of each chapter using an auto-prompt system,
we can effectively steer the model in a coherent direction.
Simultaneously, we update the subsequent storyline. This not
only ensures alignment with the given information and the
narrative structure but also significantly enhances the overall
text quality and consistency of the outlines. Our method
demonstrates significant potential for the application of RL
in various text generation tasks, including academic paper
writing. Moreover, the versatility of our approach extends to
controlling the stylistic nuances within a narrative. This could
involve tailoring the tone, mood, or even the linguistic style
to align with specific preferences or intended outcomes.
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